Исследовательская работа на тему: «Броуновское Движение»

Исламова Анэль    

Руководитель: Мерикенова Толганай Капсаматовна

.

.

Введение

Броуновское движение, беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием толчков со стороны молекул окружающей среды. Открыто Робертом Броуном в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц. Я по профессии модельер-закройщик и даже в мое профессии часто встречается броуновское движение в процессе работы я сталкиваюсь с такой операцией как В.Т.О (влажно-тепловая обработка). В таком процессе как В.Т.О используется вода, а как говорилось ранее броуновское движение-это взвешенные в жидкости или газе частицы. Тем самым непосредственно в моей работе используется броуновское движение.

 

Цель моей работы: пронаблюдать и изучить броуновское движение частиц.

Задачи исследования: Изучить историю открытия броуновского движения, роль броуновского движения, движения биллиардного шарика. Рассмотреть теорию броуновского движения. Рассказать о понятии броуновского движения с точки зрения теории Хаоса.

 

Сроки выполнения работы

Начало работы – сентябрь 2019

Окончание работы – сентябрь 2020

Глава I.Открытия Броуновского Движения. Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ. В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Величина пыльцевых клеток колеблется от 2,5 мкм до 250 мкм. Броуновские частицы имеют размер порядка 0,1–1 мкм. Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788). Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы». Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям, и чтобы сделать их как можно более доступными для обычных наблюдений». Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук, видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

Глава II. Теория броуновского движения в реальной жизни. Теория случайных блужданий имеет важное практическое приложение. Говорят, что в отсутствие ориентиров человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На прежнее место он вернуться может, но только случайно. А вот свой путь он пересекает много раз. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги, однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему. Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l, т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края. Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья  или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас…

Сущность явления. Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют, более мелкие частицы двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Глава III.Роль Броуновского движения. Жану Перрену пришла однажды в голову блестящая идея сравнить физическое броуновское движение с непрерывными недифференцируемыми кривыми. Идея Перрена послужила источником вдохновения для юного Норберта Винера, примерно в 1920 г. определившего и исследовавшего математическую реализацию броуновского движения, которую и сейчас нередко называют винеровским процессом. Много позже стало известно, что тот же процесс был подробно, хотя и не так строго, рассмотрен в докторской диссертации Луи Башелье. Странно, что само по себе броуновское движение – при всей своей чрезвычайной важности во многих других областях – не находит в настоящем эссе никакого нового приложения. Время от времени оно помогает вчерне набросать проблему, однако, и в этих случаях при дальнейшем ее рассмотрении оно непременно заменяется каким-либо другим процессом. И все же во многих случаях можно зайти, на удивление, далеко просто модифицируя броуновское движение; нужно только следить за тем, чтобы модификации оставались масштабно-инвариантными. Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Глава IV.Теория броуновского движения.  Имеет принципиальное значение, она проясняет статистическую природу второго начала термодинамики и показывает границы его применимости. Она позволила уточнить критерии обратимости или необратимости молекулярных процессов и показать, что различие между ними не носит абсолютного характера. По Смолуховскому, процесс является необратимым, если переход из рассматриваемого состояния в исходное требует большого времени, и обратимым, если время возврата невелико. Смолуховскому удалось оценить время возврата, которое относится к экспериментально наблюдаемому параметру, т. е. является характеристикой макросостояния, а не микросостояния. Теория броуновского движения находит приложение в физ. химии дисперсных систем, на ней основаны кинетическая теория коагуляции растворов, теория седиментационного равновесия. В метрологии броуновское движение рассматривают как основной фактор, ограничивающий точность чувствительных измерительных приборов. Предел точности измерений оказывается достигнутым, когда флуктуационное (броуновское) смещение подвижных частей измерительного прибора по порядку величины совпадёт со смещением, вызванным измеряемым эффектом.

Броуновское движение и диффузия. Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения. Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой). Диффузию удобно наблюдать в густых гелях. Такой гель можно приготовить, например, в баночке из-под пенициллина, приготовив в ней 4–5%-ный раствор желатина. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при перемешивании, опустив баночку в горячую воду. После охлаждения получается нетекучий гель в виде прозрачной слегка мутноватой массы. Если с помощью острого пинцета осторожно ввести в центр этой массы небольшой кристаллик перманганата калия («марганцовки»), то кристаллик останется висеть в том месте, где его оставили, так как гель не дает ему упасть. Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый цвет шарик, со временем он становится все больше и больше, пока стенки баночки не исказят его форму. Почему получился шарик, понятно: ионы MnO4, образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.

Глава V.Понятие Броуновского движения с точки зрения теории Хаоса. Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи броуновского движения. Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно, этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя. Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера. Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как, например, Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато. Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

см. Приложение 1

Глава VI. ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА. Любой, кто когда-либо брал в руки кий для бильярда, знает, что ключ к игре — точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго! Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола — это изобразить угол отскока или длину дуги, соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины. Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является, основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня, словом фрактал.

см. Приложение 2

ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС. Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц. Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте, попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк. Для начала нужно сгенерировать Дерево Пифагора (слева). Необходимо сделать ствол потолще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи. Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели. Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. Результат (слева) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок. Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали! Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные броуновским движением, применяются дважды ко всем числам с левой стороны и только один раз к числам справа. На этот раз, результат — приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева. В модели представлена демонстрация броуновского движения. Крупная частица, находящаяся в жидкости, совершает хаотичные движения, косвенно доказывая, что жидкость также состоит из отдельных, хаотично движущихся, частиц. В результате многочисленных столкновений частица меняет скорость и направление своего движения, а траектория движения отображается на графике. Очистить график можно с помощью соответствующей кнопки. (см. Приложение 3)

Сравнение характера движения частицы при помощи модели броуновского движения.

см. Приложение 4

Глава VII. Эксперимент: Перемещение частиц гуммигута в воде. Я взяла акварельные краски, развила их с водой с помощью микроскопа, мы можем видеть на экране перемещение частиц гуммигута в воде. Если фиксировать положение частицы через небольшие равные промежутки времени, например, через каждые 30 секунд, то построенная таким методом траектория движения частицы будет представлять собой ломаную линию. Нам представлена траектория движения частицы краски гуммигута в воде (по Перрену). Радиус частиц составляет 0,52*10-6 м, расстояние между делениями сетки 3,4*10-6 м.

см. Приложение 5

 

Выводы и заключения.

Броуновские частицы движутся под влиянием беспорядочных ударов молекул.

Броуновское движение является хаотичным.

По траектории частицы можно судить об интенсивности движения, чем меньше масса частицы, тем интенсивней становится движение.

Интенсивность броуновского движения прямо зависит от температуры.

Броуновское движение никогда не прекращается.

Броуновское движение могло случайно наблюдаться учёными до Броуна, но из-за несовершенства микроскопов и отсутствия представления о молекулярном строении веществ, оно никем не изучалось. После Броуна оно изучалось многими учёными, но дать ему объяснение никто не смог.

Создание количественной теории броуновского движения Эйнштейном и её экспериментальное подтверждение Перреном позволило убедительно доказать существование молекул и их непрерывного беспорядочного движения.

Причины броуновского движения — тепловое движение молекул среды и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул.

На интенсивность броуновского движения влияет размер и масса броуновской частицы, температура и вязкость жидкости.

 

Список использованной литературы.

  1. http://ru.wikipedia.org
  2. http://krugosvet.ru/enc/nauka_i_tehnika/fizika/BROUNOVSKOE_DVIZHENIE.html
  3. http://www.physics.nad.ru/Physics/Cyrillic/brow_txt.htm
  4. http://bse.sci-lib.com/article001503.html
  5. http://scorcher.ru/art/theory/determinism/broun.php

7 http://elementy.ru/trefil/30